首页> 外文OA文献 >An Original Stepwise Multilevel Logistic Regression Analysis of Discriminatory Accuracy : The Case of Neighbourhoods and Health
【2h】

An Original Stepwise Multilevel Logistic Regression Analysis of Discriminatory Accuracy : The Case of Neighbourhoods and Health

机译:判别精度的原始逐步多级Logistic回归分析:邻里与健康案例

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Background and Aim Many multilevel logistic regression analyses of "neighbourhood and health" focus on interpreting measures of associations (e.g., odds ratio, OR). In contrast, multilevel analysis of variance is rarely considered. We propose an original stepwise analytical approach that distinguishes between "specific" (measures of association) and "general" (measures of variance) contextual effects. Performing two empirical examples we illustrate the methodology, interpret the results and discuss the implications of this kind of analysis in public health. Methods We analyse 43,291 individuals residing in 218 neighbourhoods in the city of Malm, Sweden in 2006. We study two individual outcomes (psychotropic drug use and choice of private vs. public general practitioner, GP) for which the relative importance of neighbourhood as a source of individual variation differs substantially. In Step 1 of the analysis, we evaluate the OR and the area under the receiver operating characteristic (AUC) curve for individual-level covariates (i.e., age, sex and individual low income). In Step 2, we assess general contextual effects using the AUC. Finally, in Step 3 the OR for a specific neighbourhood characteristic (i.e., neighbourhood income) is interpreted jointly with the proportional change in variance (i.e., PCV) and the proportion of ORs in the opposite direction (POOR) statistics. Results For both outcomes, information on individual characteristics (Step 1) provide a low discriminatory accuracy (AUC = 0.616 for psychotropic drugs; = 0.600 for choosing a private GP). Accounting for neighbourhood of residence (Step 2) only improved the AUC for choosing a private GP (+0.295 units). High neighbourhood income (Step 3) was strongly associated to choosing a private GP (OR = 3.50) but the PCV was only 11% and the POOR 33%. Conclusion Applying an innovative stepwise multilevel analysis, we observed that, in Malmo, the neighbourhood context per se had a negligible influence on individual use of psychotropic drugs, but appears to strongly condition individual choice of a private GP. However, the latter was only modestly explained by the socioeconomic circumstances of the neighbourhoods. Our analyses are based on real data and provide useful information for understanding neighbourhood level influences in general and on individual use of psychotropic drugs and choice of GP in particular. However, our primary aim is to illustrate how to perform and interpret a multilevel analysis of individual heterogeneity in social epidemiology and public health. Our study shows that neighbourhood "effects" are not properly quantified by reporting differences between neighbourhood averages but rather by measuring the share of the individual heterogeneity that exists at the neighbourhood level.
机译:背景和目标许多关于“邻里与健康”的多层次logistic回归分析都着眼于解释关联的度量(例如,比值比或OR)。相反,很少考虑方差的多级分析。我们提出了一种原始的逐步分析方法,该方法可以区分“特定”(关联度量)和“一般”(变异度量)上下文效应。通过两个经验例子,我们说明了方法,解释了结果并讨论了这种分析在公共卫生中的意义。方法我们分析了2006年瑞典马尔姆市218个社区中的43,291个人。我们研究了两个个人结局(精神药物的使用以及私人与公共全科医生的选择,GP),其中,社区作为来源的相对重要性个体差异的差异很大。在分析的第1步中,我们针对个体级协变量(即年龄,性别和个体低收入)评估OR和接收者工作特征(AUC)曲线下的面积。在第2步中,我们使用AUC评估总体上下文效果。最后,在步骤3中,将特定邻域特征(即邻域收入)的OR与方差的比例变化(即PCV)和相反方向(POOR)统计信息中OR的比例共同解释。结果对于两种结果,有关个体特征的信息(步骤1)提供的辨别准确性均较低(对于精神药物,AUC = 0.616;对于选择私人全科医生,= 0.600)。计入居住区(步骤2)仅改善了选择私人GP(+0.295个单位)的AUC。高邻居收入(第3步)与选择私人GP(OR = 3.50)密切相关,但PCV仅为11%,POOR为33%。结论应用创新的逐步多级分析,我们观察到,在马尔默,邻里背景本身对精神药物的个人使用影响可忽略不计,但似乎强烈限制了私人全科医生的个人选择。但是,后者只是由邻里的社会经济状况作了适度的解释。我们的分析基于真实数据,并提供有用的信息,以了解总体上邻里水平的影响,以及个人使用精神药物以及特别是GP的选择。但是,我们的主要目的是说明如何对社会流行病学和公共卫生中的个人异质性进行多层次分析。我们的研究表明,不能通过报告邻域平均值之间的差异来正确地量化邻域“效应”,而是通过测量在邻域级别存在的各个异质性的份额来进行适当量化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号